Ela Inequalities Involving Eigenvalues for Difference of Operator Means∗

نویسنده

  • MANDEEP SINGH
چکیده

In a recent paper by Hirzallah et al. [O. Hirzallah, F. Kittaneh, M. Krnić, N. Lovričević, and J. Pečarić. Eigenvalue inequalities for differences of means of Hilbert space operators. Linear Algebra and its Applications, 436:1516–1527, 2012.], several eigenvalue inequalities are obtained for the difference of weighted arithmetic and weighted geometric means of two positive invertible operators A and B on a separable Hilbert space under the condition that A− B is compact. This paper aims to prove some general versions of eigenvalue inequalities for the difference of weighted arithmetic, weighted geometric and generalized Heinz means with better bounds under the same conditions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inequalities involving eigenvalues for difference of operator means

In a recent paper by Hirzallah et al. [O. Hirzallah, F. Kittaneh, M. Krnić, N. Lovričević, and J. Pečarić. Eigenvalue inequalities for differences of means of Hilbert space operators. Linear Algebra and its Applications, 436:1516–1527, 2012.], several eigenvalue inequalities are obtained for the difference of weighted arithmetic and weighted geometric means of two positive invertible operators ...

متن کامل

Inequalities of Ando's Type for $n$-convex Functions

By utilizing different scalar equalities obtained via Hermite's interpolating polynomial, we will obtain lower and upper bounds for the difference in Ando's inequality and in the Edmundson-Lah-Ribariv c inequality for solidarities that hold for a class of $n$-convex functions. As an application, main results are applied to some operator means and relative operator entropy.

متن کامل

Ela Eigenvalues of Sums of Pseudo-hermitian Matrices

We study analogues of classical inequalities for the eigenvalues of sums of Hermitian matrices for the cone of admissible elements in the pseudo-Hermitian case. In particular, we obtain analogues of the Lidskii-Wielandt inequalities.

متن کامل

Ela Matrix Inequalities by Means of Embedding

In this expository study some basic matrix inequalities obtained by embedding bilinear forms 〈Ax, x〉 and 〈Ax, y〉 into 2 × 2 matrices are investigated. Many classical inequalities are reproved or refined by the proposed unified approach. Some inequalities involving the matrix absolute value |A| are given. A new proof of Ky Fan’s singular value majorization theorem is presented.

متن کامل

Some weighted operator geometric mean inequalities

In this paper, using the extended Holder- -McCarthy inequality, several inequalities involving the α-weighted geometric mean (0<α<1) of two positive operators are established. In particular, it is proved that if A,B,X,Y∈B(H) such that A and B are two positive invertible operators, then for all r ≥1, ‖X^* (A⋕_α B)Y‖^r≤‖〖(X〗^* AX)^r ‖^((1-α)/2) ‖〖(Y〗^* AY)^r ‖^((1-α)/2) ‖〖(X〗^* BX)^r ‖^(α/2) ‖〖(Y...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014